http://animalzoon.blogspot.in/ |
The ability to dive underwater for extended periods is a specialized feat marine and aquatic mammals have evolved over millions of years. Diving mammals will slow their heart rate, stop their breathing, and shunt blood flow from their extremities to the brain, heart, and muscles when starting a dive. (Related: "Can Diving Mammals Avoid the Bends?")
But champion divers, such as elephant seals, can hold their breath for about two hours. "It was known that they rely on internal oxygen stores when they're down there," said Michael Berenbrink, a zoologist at the University of Liverpool, England, who specializes in how animals function.
But there was something else going on in the bodies of these animals that researchers were missing, until now.
So what's new? A study published June 13 in the journal Science reports that diving mammals—including whales, seals, otters, and even beavers and muskrats—have positively charged oxygen-binding proteins, called myoglobin, in their muscles.
This positive characteristic allows the animals to pack much more myoglobin into their bodies than other mammals, such as humans—and enables diving mammals to keep a larger store of oxygen on which to draw while underwater.
Why is it important? Packing too many proteins together can be problematic, explained Berenbrink, a study co-author, because they clump when they get too close to each other.
"This [can cause] serious diseases," he added. In humans, ailments like diabetes and Alzheimer's can result.
But myoglobin is ten times more concentrated in the muscles of diving mammals than it is in human muscles, Berenbrink said.
Since like charges repel each other—think of trying to push together the sides of two magnets with the same charge—having positively charged myoglobin keeps the proteins from sticking to each other.